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SUMMARY

Mislocalization, cleavage, and aggregation of the human protein TDP-43 is found
in many neurodegenerative diseases. As is the case with many other proteins
that are completely or partially structurally disordered, production of full-length
recombinant TDP-43 in the quantities necessary for structural characterization
has proved difficult. We show that the full-length TDP-43 protein and two trun-
cated N-terminal constructs 1-270 and 1-263 can be heterologously expressed
in E. coli. Full-length TDP-43 could be prevented from aggregation during purifi-
cation using a detergent. Crystals grown from an N-terminal construct (1-270) re-
vealed only the N-terminal domain (residues 1-80) with molecules arranged as
parallel spirals with neighboring molecules arranged in head-to-tail fashion. To
obtain detergent-free, full-length TDP-43 wemutated all six tryptophan residues
to alanine. This provided sufficient soluble protein to collect small-angle X-ray
scattering data. Refining relative positions of individual domains and intrinsically
disordered regions against this data yielded a model of full-length TDP-43.

INTRODUCTION

The deposition of intracellular TDP-43 inclusions is the hallmark of TDP-43 pathology. Initially observed in

neural tissues from individuals with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral

sclerosis (ALS) (Neumann et al., 2006), TDP-43 pathology is now associated with many neurodegenerative

diseases. These include, but are by nomeans limited to, Alzheimer disease (Amador-Ortiz et al., 2007), Par-

kinson disease (Nakashima-Yasuda et al., 2007), hippocampal sclerosis (Amador-Ortiz et al., 2007), and

chronic traumatic encephalopathy (McKee et al., 2010). Mixed pathology is common with these diseases,

and TDP-43 pathology can be found not only alongside Lewy bodies (Nakashima-Yasuda et al., 2007), am-

yloid-b plaques, and tau tangles (Amador-Ortiz et al., 2007) in cases of neurodegenerative disease but also

in clinically normal aged individuals (Wennberg et al., 2019).

TDP-43 protein has several functions, and its modular structure facilitates this multitasking. Two centrally

located RNA recognition motifs (RRM) strongly bind UG-rich RNA (Lukavsky et al., 2013) or TG-rich DNA

(Austin et al., 2014) directing TDP-43 to pre-mRNAs and intronic sites (Tollervey et al., 2011). Through these

protein-nucleic acid interactions TDP-43 facilitates RNA transport (Fallini et al., 2012) and directly effects

splicing of a multitude of RNAs including those coding for many ALS-associated heterogeneous nuclear

ribonucleoprotein particles (Deshaies et al., 2018) and TDP-43 itself (Ayala et al., 2011). A low-complexity

domain, situated C terminal to the RRM domains, is involved in stress granule formation following cellular

stress (Colombrita et al., 2009). This domain undergoes liquid-liquid phase transitions and complexes with

other TDP-43 molecules (Li et al., 2018a) or other intrinsically disordered proteins (McDonald et al., 2011),

whereas RRM domains trap mRNAs to assist selective translation during and following stress. Many single

amino acid substitutions within the C-terminal domain are known to cause ALS and FTLD, indicating that

aberrant stress granule dynamics may lie at the heart of TDP-43 proteotoxicity (Wolozin, 2012). At the N

terminus, a ubiquitin or dix-like domain (Mompeán et al., 2016; Qin et al., 2014) provides a polymerization

surface that enables formation of dimer and higher-order oligomers predominantly found in the cell

nucleus (Afroz et al., 2017).
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In addition to the domains described earlier, TDP-43 also contains nuclear export and import sequences

that flank the RRM domains. In the full-length form, this enables shuttling of the protein between the nu-

cleus and cytoplasm (Ayala et al., 2008). Observation of TDP-43 inclusions in FTLD and ALS brain tissues

has shown that it is fragmented (Neumann et al., 2006) with a 25-kDa cleavage product being themost com-

mon but 15- and 35-kDa forms are also seen. The common element present in these cleavage products is

the low-complexity C-terminal domain. In this state, the nuclear localization signal is lost and the protein

remains cytoplasmic and aggregates through the low-complexity C-terminal domain. The normal functions

and misfunction of TDP-43 are therefore predicated by its propensity to oligomerize and aggregate. This

property makes in vitro characterization difficult, particularly using structural techniques that require mono-

disperse samples at relatively high concentrations. The modularity of TDP-43 means that individual

domains can be produced recombinantly to shed light on their organization and structure-property rela-

tionship. This approach has been well utilized to gain insight on dimerization (Afroz et al., 2017), RNA bind-

ing (Lukavsky et al., 2013), and thermal stability (Austin et al., 2014; Chiang et al., 2016). However, to go

beyond individual domains and gain a holistic understanding of TDP-43 structure we tested several

strategies to produce pure, full-length TDP-43. Using sarkosyl detergent and mutagenically removing

tryptophan resides (TDP-43WtoA), we were able prevent recombinant TDP-43 aggregation during protein

preparation in each of these cases. We produced sufficient quantities of detergent-free TDP-43WtoA for

small-angle X-ray scattering (SAXS) analysis allowing us to create a model of full-length TDP-43.

RESULTS

Recombinant Expression and Purification of Full-Length and C-Terminal Truncated TDP-43

On heterologous expression of full-length wild-type TDP-43 in E. coli followed by cell lysis and centrifuga-

tion, we found the protein in the insoluble fraction as has previously been described (Furukawa et al., 2011).

Figure 1. Purification of Full-Length Wild-Type TDP-43 Using 0.2% Sarkosyl

(A) Cell lysis in 50 mM sodium phosphate pH 8.0, 300 mM sodium chloride, 5 mM imidazole, 5 mMdithiothreitol, complete

protease inhibitor cocktail, 1 mM phenylmethylsulphonyl fluoride, 50 mg/mL lysozyme, and pure water. SF, soluble

fraction; IF, insoluble fraction.

(B) Immobilizedmetal ion chromatography. SF, soluble fraction; FT, flowthrough; wash fraction (75 mM imidazole), elution

with increasing imidazole concentration.

(C) Size exclusion chromatography (SEC) and SDS-PAGE of SEC fractions containing pure wild-type TDP-43.
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However, low-temperature expression followed by cell lysis in pure water yielded segregation of the

protein roughly equally between soluble and insoluble fractions but made affinity purification problematic.

This is possibly an indication that recombinant TDP-43 is not localized to inclusion bodies when expressed

in bacteria. To solve this problem, 0.2% sodium lauroyl sarcosinate (sarkosyl) was added to the cell lysate

and used in all purification buffers. This yielded 5.3 mg of pure, soluble protein for a litre of culture (Fig-

ure 1). This detergent-solubilized protein is stable without visible aggregation after a week at 4�C or a

freeze/thaw cycle.

Several constructs of C-terminal truncated TDP-43 (N-terminal 1-263, 1-270, 1-290, 1-320, and several single

point mutations of 1-270 fragment including A90V, D169G, K263E, and N267S) were prepared and evalu-

ated. The N-terminal 1-270 wild-type construct provided stable purified protein (Figure 2) and was pursued

for further investigations. This was used for crystallization experiments from which structure of N-terminal

domain (NTD) (1-80) was obtained.

Addition of soluble fusion domains is a common technique used to enable production of recombinant pro-

teins. Wang et al. (2018) added a maltose-binding protein fusion to TDP-43 directly C terminal to the low-

complexity domain where it effectively increased solubility. To obtain detergent-free TDP-43 without

recourse to fusions proteins, and with the knowledge that several TDP-43 tryptophan residues are involved

in folding (Prakash et al., 2018) and phase transitioning (Li et al., 2018a, 2018b), together with the role of

aromatic residues in low-complexity aromatic-rich kinked segment formation (Hughes et al., 2018), we

created a construct where all tryptophan residues in the TDP-43 primary sequence are replaced with

alanine (TDP-43WtoA). Cell lysis and protein purification with standard immobilized metal ion chromatog-

raphy buffers without any detergent facilitated production of full-length TDP-43WtoA that was stable for

3 days at 4�C (Figure 3), sufficient to undertake non-crystallographic structural studies.

Crystallization of the N-Terminal TDP-43 Dimerization Domain

To elucidate the molecular basis of TDP-43 pathogenesis, a stable N-terminal 1-270 fragment was used for

crystallization and formed crystals when grown at 19�C. The structure provided a surprise as only the NTD

(1-80) was visible. Analysis of several crystallization drops by SDS-PAGE indicated the 30-kDa original

protein to have shifted to approximately 23 kDa, which would indicate cleavage of RRM2. During 1 week

of crystallization the protein appears to have auto-cleaved. The TDP-43 NTD crystallized in space group

P212121 with five identical molecules in the asymmetric unit. The structure was solved by molecular replace-

ment and refined to 2.55 Å resolution (Table 1). The NTD adopts a similar conformation as reported in a

Figure 2. Purification of Wild-Type TDP-43 Residues 1-270

(A) Nickel-nitriloacetic acid (NiNTA)-immobilized metal ion chromatography (IMAC). SF, soluble fraction; FT,

flowthrough; wash (5 mM imidazole); 75 mM/150 mM elution imidazole concentration.

(B) Size exclusion chromatography.

(C) Fractions from (B) containing pure wild-type TDP-43 residues 1-270.
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recent crystallographic structure obtained in P63 space group (Afroz et al., 2017). A compact five-stranded

b-sheet fold was observed with a two-turn alpha helix (Figures 4A–4C), and the negatively charged tail of

each domain is packed against the positively charged C-terminal part (head-to-tail interaction).

The head-to-tail interfaces between the molecules differ from those reported previously (Afroz et al., 2017).

A sulfate ion binds at the interface between the molecules and is bonded to Arg52 and Arg55, which serves

as a wedge, increasing the distance between the monomers. This binding of a sulfate ion to Arg52 and

Arg55 (Figure 4D) rearranges their side chains preventing strong bonding between Arg52-Glu3 and

Arg55-Glu21 reported in an earlier NTD structure (Afroz et al., 2017). These change the position of the N

terminus toward the interface (Figures 4D and 4E), moving the Glu3 side chain away from Arg52 andmaking

strong salt bonding with Arg52 impossible. The changes in the position of themonomers against each other

alter the superhelical bundle arrangement observed previously (Afroz et al., 2017) (Figure S1). In our struc-

ture, bundles of the tight spirals are packed against six neighboring spirals (Figure S1C). Each spiral, with

radius of 46 Å, has 10 NTD molecules in a full turn (Figures 4A, 4B, S1A, and S1B) with distance between

two rings being ~36 Å. Analysis of the structural changes on sulfate binding confirms that ligand binding

at the molecular interface could change the nature of the helical arrangements. These head-to-tail interac-

tions that lead to parallel spirals are consistent with the view that physiological TDP-43 oligomerization is

mediated by its NTD and may be key to prevent the formation of pathologic aggregates.

Structural Characterization of Full-Length Tryptophan-Free TDP-43

Solvent-accessible tryptophan residues within intrinsically disordered regions are unlikely to contribute to

individual domain structures. It is, however, important to understand the perturbations caused by muta-

tion of tryptophans within the NTD and RRM1 domain. Available RRM1 structures (Kuo et al., 2014; Lukav-

sky et al., 2013) show Trp178 has a role in nucleic acid binding but in the apo form both Trp113 and

Trp172 side-chains protrude into solvent. Comparing tryptophan solvent accessible surface area in

various proteins taken from a non-redundant database of 27,015 protein structures (He et al., 2014) indi-

cates the RRM1 tryptophans to be unusually exposed (Figure 5). Thus, mutation of these residues is un-

likely to change the overall RRM1 structure. The side chain of Trp68, found in NTD loop 5 adjacent to the

domain core, forms hydrophobic interactions with other residues within the core (Figure S2) (Mompeán

et al., 2016) and may support a homodimer interface (Afroz et al., 2017). Indeed, reducing

Figure 3. Purification of Full-Length TDP-43WtoA

(A) NiNTA IMAC. SF, soluble fraction; FT, flowthrough; wash (5 mM imidazole); 80 mM/150 mM elution imidazole

concentration.

(B) Size exclusion chromatography (SEC).

(C) SEC fractions containing pure TDP-43WtoA.
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homodimerization propensity may have aided our recovery of soluble and relatively stable full-length pro-

tein. Trp68 retains some solvent exposure (Figure 5), is surrounded by loop regions, whose mutation is

thus unlikely to affect secondary structural elements that contribute to overall domain tertiary structure.

Using the expression protocol described above, and elaborated upon in the Transparent Methods sec-

tion, we were able to produce sufficient detergent-free recombinant TDP-43WtoA to perform chromato-

graphic SAXS experiments. Size exclusion chromatograms of full-length TDP-43 (Figure S3) are slightly

asymmetric. This could be interpreted as a fast oligomeric equilibrium, between monomer and dimer,

for example, or an interaction with column media, which delays elution of some molecules. Sampling

data points in the first and last thirds of a single TDP-43WtoA elution indicates a decrease in mean radius

of gyration (Rg) from 41.8 G 3.5 Å to 38.9 G 4.0 Å (Figure S3). Owing to this small change in Rg, and lack

of distinct sub-populations within each profile, we averaged the data across two full TDP-43WtoA elutions.

This yielded good-quality data over an angular range of 0.0084–0.35 Å�1 (Figure 6A). Inspection of the

TDP43

Data Collection

Space group P21 21 21

Cell dimensions

a, b, c (Å) 34.637, 95.224, 157.558

a, b, g (�) 90.00, 90.00, 90.00

Resolution (Å)a 78.90–2.55 (2.62–2.55)

Rmerge
a 15.6 (0.986)

I/sIa 5.7(1.6)

CC1/2 (%)a 0.985(0.549)

Completeness (%)a 98.7(99.1)

Redundancya 3.9(4.0)

Wilson B (Å2) 38.3

Refinement

No. reflections 16,549

Rwork/Rfree 21.46/25.86

No. of atoms

Protein 3,040

Ligand/ion 25

Water 235

B-factors

Protein 50.78

Ligand/ion 94.12

Water 43.33

RMS deviations

Bond lengths (Å) 0.0040

Bond angles (�) 1.256

PDB 6T4B

Table 1. Crystallographic Data Collection and Refinement Statistics
avalues in paranthesis are for the outer shell of data
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Guinier plot (Figure 6B) indicates that TDP-43WtoA is not aggregated and has Rg 41.1 Å. Rendering the

experimental data as a dimensionless Kratky plot shows TDP-43WtoA to have a high degree of unfolding

but to not be completely disordered (Figure 6C). This is expected given the presence of previously

characterized modular nucleic acid binding and dimerization domains (Afroz et al., 2017; Austin et al.,

2014; Lukavsky et al., 2013). Assignment of largest intramolecular distances (Dmax) is difficult for disor-

dered proteins, and this is the case for TDP-43WtoA, with possible Dmax values ranging from 132 to 180 Å

(Figure 6D).

Using available structures for RRMs, dimerization, and helical domains in conjunction with linker peptides

synthesized in silico we generated initial models of full-length TDP-43WtoA (Figure S4) and refined them

against our experimental SAXS data to yield a conformationally optimized model (Figure 7A). The mono-

mericmodel generated has little contact between domains except between theNTD and RRM2 (Figure 7B).

Calculation of its scattering profile indicates a very good fit to the experimental data c2 1.1 (Figure 7C). The

experimentally determined Rg agrees with the model within 0.8 Å (41.1 and 41.9 Å, respectively). Compar-

ison of the distance distribution functions of our monomeric, full-length TDP-43WtoA model with that

derived from experimental data also indicates exceptionally good correlation (Figure 7D). Models of

TDP-43WtoA where dimerization was enforced through the NTD had consistently poor fit to the experi-

mental data, c2 of 1.5 and Rg 49.7 Å.

Figure 4. Crystal Structure of TDP-43 NTD at 2.55 Å Resolution

Molecules of TDP-43 NTD are arranged in the crystal as parallel spirals.

(A) Filaments from neighboring molecules arranged in head-to-tail fashion. Atoms of 10 molecules comprising two neighboring asymmetric units make one

full turn of the spiral and are shown in different colors. The outside radius of the spiral is ~92 Å, whereas internal radius is 45 Å.

(B) Side view of the spiral, showing two full turns with distance between two turns of the spiral 36.2 Å.

(C) Cartoon representation of two neighboring TDP-43 NTD molecules.

(D) Expanded view of the interface betweenmolecules shown in (C). Amino acid side chains making intermolecular contacts are shown in stick representation

in the corresponding domain color and labeled. Intermolecular hydrogen bonds are shown as dotted black lines.

(E) The dimer interface described by Afroz et al. (2017) (PDB: 5MDI) and labeled as in (C).

(F) Superposition between dimer interfaces shown in (D) and (E). Structures were aligned to one molecule rather than the whole dimer.
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DISCUSSION

Although the structures of individual domains of TDP-43 have been elucidated using several techniques

that have revealed some aspects of the molecular functions of this protein (Afroz et al., 2017; Chiang

et al., 2016; Guenther et al., 2018; Kuo et al., 2014; Mompeán et al., 2016), the structure of full-length

TDP-43 has been refractory to characterization due to the difficulty of purifying soluble and stable protein

in sufficient amounts for analysis (Johnson et al., 2009; Kitamura et al., 2018; Li et al., 2017). A recent report

overcame this challenge using denaturing conditions, but this could change the native TDP-43 structure

(Vivoli Vega et al., 2019). In this work, we describe full-length wild-type TDP-43 and TDP-43WtoA, both suc-

cessfully purified by non-denaturingmethods. SAXS data of TDP-43WtoA reveal the conformation of the full-

length protein in solution. The region of TDP-43 comprising the NTD, RRM1, and RRM2 adopts a compact

triangular structure, whereas the position of the C terminus is variable.

A fragment of TDP-43 comprising residues 1-270 including NTD and RRMs was used in crystallization

experiments and the structure of the NTD (residues 1-80) was elucidated at 2.55 Å resolution. The pro-

tein appears to have been auto-cleaved at N terminal to RRM2 during the 7 days required for crystal-

lization to produce diffraction-quality crystals, whereas RRM1 is conformationally mobile in crystallo

and therefore not visible. The TDP43 NTD has been reported to be essential for dynamic TDP-43

oligomerization that may prevent the aggregation-prone C terminal from forming pathogenic and irre-

trievable TDP-43 aggregates. This crystal structure shows that the superhelical format arises from head-

to-tail interactions between NTD molecules. The SAXS model implies that the peptide chain linking

NTD and RRM1 domains is longer than other domains, so it is likely to be disordered when forming

higher-order structures.

The ability to obtain full-length TDP-43 in a stable form without denaturing conditions opens possibil-

ities for extensive biophysical studies on both the wild-type and C-terminal mutants, which are

known to exert greater aggregation propensity (Cao et al., 2019). We propose that the approaches

used here may have general applicability and may prove useful for other aggregation-prone

proteins where a significant proportion of the macromolecule is classified as ‘‘unstructured,’’ i.e., having

a lower folding probability. Enabling the purification of stable complexes via mutation of residues that

cause precipitation or aggregation has recently proven key to our description of the functional

complexes between SOD1 and its cognate chaperone (Sala et al., 2019). Similarly, use of detergents

for soluble proteins should enable high-concentration structural studies for such systems, providing

an essential platform for molecular understanding of pathogenic properties and possible therapeutic

solutions.

Figure 5. Distribution of Solvent Accessible Surface Area (SASA) of Tryptophans in a Non-redundant Database of

Protein Structures

SASA for three tryptophan residues found in structured domains of TDP43 is shown in magenta: W68 in the NTD and

W113 and W172 in RRM1. Their cumulative percentile of exposure is 23.6%, 98.5%, and 91.8% respectively.
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Limitations of the Study

A population of intrinsically disordered sequences are, by their nature, very unlikely to simultaneously

occupy the same conformation. Although the model presented in Figure 7A is our best representation

of the TDP-43 structure, it is clearly a snapshot of a very dynamic system. The model presented in Figure 7A

has an unrestrained and predominantly disordered C-terminal region but, as noted, a relatively compact

N-terminal region comprising the NTD, RRM1, and RRM2. Disordered parts of the protein contribute

less to scattering intensity than globular domains and are poorly defined by scattering data. To determine

how variable the spatial arrangement presented in Figure 7A may be, we performed long molecular dy-

namics simulations using our optimized model as a starting structure. Figure 8 shows that positioning of

the disordered C terminus has little effect on the fit to experimental data. However, those structures

that fit the data poorly exhibit an increase in the Rg value for the whole molecule and the Rg representing

NTD, RRM1, and RRM2 domains (amino acids 1-258) (Figures S5A and S5B and Table S1). For these models,

inter-domain linkers are also found in an extended conformation (Figures S5C–S5E and Table S1) and sep-

aration between domains is therefore maximized. Conversely, for models that fit the data well, the globular

domains occupy a compact conformation, whichmatches that presented in Figure 7A (Figures S5A and S5B

Figure 6. Full-Length TDP-43 X-Ray Scattering

(A) Intensity plot of X-ray scattering by TDP-43WtoA.

(B) TDP-43WtoA Guinier plot (upper) and residuals (lower). R2 0.974 over data range 0.3 < q.Rg < 1.29. Rg = 41.1 G 0.4 Å

(with error stated as SEM) as determined by m = -Rg2/3, where m is the gradient of the line, and I(0) = 8.60 3 10�3. Both

plots indicate a monodisperse sample with little or no interparticle interference.

(C) Guinier-based dimensionless Kratky plot showing that the peak maximum for TDP-43WtoA is moved away from the

point at O3 and 1.1 (highlighted in red) where globular proteins show a maximum. This is indicative of unstructured

regions. The overall form of the curve, which does not return to the baseline after the initial peak but does not continue to

increase with qRg, is also indicative of a protein with both folded and unfolded regions.

(D) SAXS distance distribution functions (P(r)) for TDP-43WtoA. Multiple possible functions are plausible with a Dmax range

132–180 Å. P(r) functions with Dmax 132–150 Å have real space Rg and I(0) that correlate well with those from the Guinier

approximation, whereas those with Dmax 170–180 Å show smooth transitions with the r scale. Dmax, Rg, and I(0)

determined from each P(r) function are stated in the legend.
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and Table S1). For both well-fitting and poorly fitting model groups the specific orientation of globular do-

mains cannot be accurately defined but the geometry of domain positions can.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, S. Samar Hasnain (s.s.hasnain@liverpool.ac.uk).

Figure 7. Model of Full-Length TDP-43 Refined Against SAXS Data

(A) Model of full-length TDP-43WtoA. Model has Rg 41.9 Å and Dmax 154 Å.

(B) Schematic of the above showing center of mass and closest contact intradomain distances.

(C) Model fit to experimental intensity scattering data c2 1.10.

(D) Distance distribution functions for experimental data showing solutions with variable possible Dmax compared with

that for the model.
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Materials Availability

All unique and stable reagents generated in this study are available from the Lead Contact without restriction.

Data and Code Availability

The atomic coordinate and structure factor of the NTD (NTD) of TDP-43 have been deposited in the Protein

DataBank (http://www.rcsb.org/) under the accession code 6T4B.

Experimental SAXS data and TDP-43 models are available from the corresponding author on request.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101159.
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Figure 8. Comparison of Full-Length TDP-43WtoAModels with Both Good and Poor Fit to Experimental SAXSData

(A) Ten TDP-43WtoA models with highest goodness of fit to the experimental data from a pool of 7,000 aligned to amino

acids 1-258 of the model presented in Figure 7A.

(B) Ten models with lowest goodness-of-fit to experimental data aligned to amino acids 1-258 of the model with highest c2.
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Supplemental Information 
 
 
Supplemental Figures 
 
 

 
Figure S1. Arrangement of TDP-43 NTD domains within different crystal forms. Continuous 

spiral with 10 NDTs in one turn of the spiral A) side view of the spiral and, B) top view. C) 

Packing of the crystal from the same direction as B. The identical chains are illustrated in the 

same colour. D) Super-helical arrangement (PDB: 5MDI) from the side and, E) the top. F) 

Packing of the crystals containing filaments. Three different representative filaments 

containing 10 domains are coloured in red, green and blue. 



 
 

 
 
 
Figure S2. Hydrogen bond formation and hydrophobic interactions formed by TDP-43 
N-terminal domain Trp68. Trp68 and surrounding residues are shown in cyan and green, 

respectively. Hydrogen bond and hydrophobic contacts are illustrated as black and yellow 

dashed lines, respectively. 

 

 

 



 
 

Fig S3. Chromatographic SAXS parameters for TDP-43WtoA. Integrated intensity is plotted 

in blue. Radius of gyration is plotted in red. The slope of the Rg plot is shown as a red line 

which has gradient coefficient -0.13 and R2 0.12. Data points in the first third of the elution 

have Rg 41.8 ± 3.5 Å while those in the last third have Rg 38.9 ± 4.0 Å, with error quoted as 

standard deviation. 

 



 
 

Figure S4. Comparison of initial models of full-length TDP-43. A and B) Monomeric TDP-

43. C and D) Dimeric TDP-43. 



 

 

 
Figure S5. Analysis of goodness-off fit to experimental SAXS data versus size 
parameters for 7000 TDP-43WtoA models. A) The relationship between full-length TDP-43WtoA 

model Rg to c2. B) The relationship between Rg of the N-terminal region of TDP-43WtoA 

molecule comprising amino acids 1-258 (NTD-RRM1-RRM2) to c2. C) The relationship 

between TDP-43WtoA NTD-RRM1 distance and c2. D) The relationship between the TDP-43WtoA 

NTD-RRM2 distance and c2. E) The relationship between the TDP-43WtoA RRM1-RRM2 

distance and c2. Parameters for structures presented in Figure 8A and 8B are highlighted with 

green and red respectively with numerical data given in Table S1. 



 

 

 
10 well-fitting 

models 
10 poorly fitting 

models 
Optimised model 

(Figure 7A) 
    

c2 1.16 ± 0.01 5.41 ± 0.10 1.10 

Rg of full-length 
TDP43 (Å) 

43.1 ± 1.5 51.8 ± 3.0 41.9 

Rg of amino 
acids 1-258 (Å) 

27.4 ± 2.9 40.2 ± 2.1 25.4 

NTD-RRM1 
distance (Å) 

38.3 ± 5.7 70.0 ± 6.2 48.2 

NTD-RRM2 
distance (Å) 

49.8 ± 15.7 83.5 ± 12.3 28.2 

RRM1-RRM2 
distance (Å) 

36.2 ± 6.7 49.4 ± 4.7 40.3 

 

Table S1. Comparison of size parameters for the models presented in Figures 7 and 8. 
Error measurements are given as standard deviation. 

 
 



Transparent Methods 
 
 

Expression and purification  
 

Full-length wild-type TDP-43 (wtTDP-43) and TDP-43 construct containing W67A, W113A, 

W172A, W334A, W385A and W412A mutations (TDP-43WtoA) were synthesised de novo with 

an N-terminal hexa-his tag and tobacco etch virus (TEV) cleavage site in pET-28a(+) vector. 

This expression plasmid was transformed into BL21 (DE3) E. coli and pre-cultured at 37 oC 

overnight in LB media with 50 µg/ml of kanamycin. 25 ml of this pre-culture was added into 1 

litre of LB media and the culture was incubated at 37 ºC in a shaker until the optical density at 

600nm was 0.7. The culture was cooled for 30 min at 4 oC. IPTG was added to a final 

concentration of 0.5 mM to induce protein expression and the flasks were kept in shaker 

overnight at 18 ºC. The cells were then harvested by centrifugation. 

 

1 g of cells was resuspended in 5 mL water and incubated at 4 oC for 30 minutes before 

sonication on ice. The cell lysate was clarified by centrifugation at 35,000 g for 1 hour before 

adding 50mM sodium phosphate pH 8.0 and 0.2% sarkosyl. A nickel-NTA IMAC column was 

equilibrated with 50 mM sodium phosphate pH 8.0, 300 mM sodium chloride, 5 mM imidazole, 

0.2% sarkosyl prior to application of the soluble fraction at room temperature. Protein was 

eluted from the column with 150-500 mM imidazole in 50 mM sodium phosphate pH 8.0, 300 

mM sodium chloride, 5 mM DTT and dialysed overnight at 4 oC with the addition of TEV 

protease against the same buffer without imidazole. The cleaved protein was then filtered 

through the NiNTA column again with wtTDP-43 now passing directly through. It was then 

concentrated and applied to a Superdex 75 16x600 mm size exclusion chromatography 

column with 0.5 ml/min flow of 20 mM Tris-HCl pH 8.0, 300 mM NaCl, 5 mM DTT, 0.2% 

sarkosyl. Fractions were analysed by SDS-PAGE and those found to contain full-length 

wtTDP-43 were pooled, concentrated and stored at 4 oC. 

 

Full-length TDP-43WtoA and truncated amino acids 1-270 wild-type TDP-43 were expressed 

and purified as above protocol without using sarkosyl, but cell lysis was carried out in 50 mM 

sodium phosphate pH 8.0, 300 mM sodium chloride, 5 mM imidazole, 5 mM DTT, complete 

protease inhibitor cocktail (Roche), 1 mM PMSF, 50 ug/ml lysozyme instead of water. 

 

Crystallisation 
A 1-270 amino acid fragment of TDP-43 protein at 40 mg/ml concentration was crystallised at 

19 oC by the hanging drop method. 1 μL of protein was mixed with 1 μL of ready-made solution 



F2 from PACT premier screen (Molecular Dimentions) and equilibrated over the reservoir 

solution, containing 0.2M Sodium bromide, 0.1M Bis-Tris propane 6.5, 20% PEG 3350. 

Crystals were flash frozen in liquid nitrogen using reservoir solution with additional 10% 

glycerol.  

 
 
Data collection, structure determination and refinement 
Data were collected at DIAMOND synchrotron, beamline I03 using x-rays of 0.9763 Å 

wavelength with PILATUS 6M detector to 2.55 Å resolution. Data were integrated with iMosflm 

(Battye et al., 2011) and scaled with Aimless (Evans, 2011) software as part of the CCP4 

package. The structure was solved by Molrep software (Vagin and Teplyakov, 2010) with 

starting model TDP-43 structure (PDB:5MDI chain A) and refined using Refmac5 (Murshudov 

et al., 2011) with applied NCS symmetry. TLS refinement was implemented towards the end 

of the refinement. Data collection and refinement statistics are presented in Table 1. 

 

Small-angle x-ray scattering data collection 
 

Chromatographic SAXS data for full-length TDP-43WtoA was collected at Diamond Light Source 

on beamline B21. Data was acquired following a chromatographic step where 45 µl of TDP-

43WtoA at 5 mg/ml was loaded onto a Superdex 200 10x300 mm size exclusion 

chromatography column at room temperature. The protein was eluted at a flow rate of 200 

µl/min and directly exposed to x-rays. Blank frames were taken prior to protein elution for 

buffer subtraction purposes. Individual frames recorded over a single chromatography run 

were averaged based on Rg values and overall similarity in a correlation map. Two separate 

chromatography runs were performed and the results of each were averaged to give the final 

scattering profile. Averaging was performed with ScÅtter. The scattering curve of full-length 

TDP-43 was observed in ScÅtter, Primus (Konarev et al., 2003) and Matlab where the Guiner 

approximation was performed and Rg determined. GNOM (Svergun, 1992) was used to 

determine distance distribution functions. 

 

Structure modelling and refinement against SAXS data 
 

An initial model of full-length TDP-43 was constructed from NMR structures of the NTD 

(Mompeán et al., 2016) (2N4P); RRM1 and RRM2 (Lukavsky et al., 2013) (4BS2); and an 

helical structure formed by residues 321-343 in the C-terminal tail (Jiang et al., 2016) (2N3X) 

shown to be partially populated (Conicella et al., 2016). Pepfold (Maupetit et al., 2009) was 

used to generate the remaining linkers between these structured segments and Modloop 



(Fiser and Sali, 2003) was used to link each component to form a continuous polypeptide. 

Tryptophan residues were mutated to alanine using Coot (Emsley and Cowtan, 2004). 

 

Two different starting models were refined against experimental SAXS data using CNS 

(Brunger, 2007), as described previously (Wright et al., 2016, 2018). Domains defined above 

were initially treated as free-floating rigid bodies and inter-domain linkers allowed to move 

freely over 750 ps simulations at 300,000 K. Over the course of the simulation 1000 structures 

were written out and compared with the experimental scattering data with FoXS (Schneidman-

Duhovny et al., 2016). This global refinement of domain positions was followed by fine-tuning 

of the position and orientation of individual domains. Here, the majority of the protein was fixed 

in space while one domain and its surrounding linkers were allowed to move. Each step in this 

process was performed independently with different initial trajectories 6 to 8 times. The 

structure that fit the data best was taken forward for further optimisation. To ensure that 

conformational space had been adequately sampled during this process, a 3.75 ns simulation 

was performed starting from our optimised model with all domains able to move freely. This 

was independently repeated with different seed trajectories 7 times. Domain centres of mass 

were calculated using CNS. 

 

Experimental SAXS data and derived models are available upon request. 

 

Solvent accessible surface area calculations 
 

Apo structures (protein only without nucleic acid or other ligand) are used to calculate the 

SASA of tryptophans in a non-redundant database of 27,015 structures taken from the Protein 

Data Bank using MUFOLD-DB (He et al., 2014), with 70% sequence identity. The SASA of 

amino acids was calculated using tcl scripts in VMD (Humphrey et al., 1996) and confirmed 

using built-in commands in GROMACS  modified with improved resolution of sampling points. 

Hydrogens are added using GROMACS before the SASA calculation. 
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